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THE PLANE PROBLEM OF THE IMPACT OF A PLATE ON 
RECTANGULAR CROSS-SECTION* 

N.A. VEKLICH and B.M. MALYSHEV 

A LIQUID STRIP OF 

Solutions of a number of plane problems on the impact of a plate on a 

finite strip of ideal incompressible fluid are obtained by using the 

theory of doubly-periodic functions of a complex variable. Two kinds of 

boundary conditions corresponding to impact of a fluid in a rectangular 

vessel and impact on a free layer are considered in detail. Formulas to 

determine the apparent mass, that are convenient for calculating 

modifications of known solutions /l, 2/, are obtained in a problem with 

a boundary condition of the first kind in the case of stiff plate impact. 

The dependence of the plate apparent mass on the vessel sizeisinvestigated. 

A comparison is given between this dependence and the results in /l-6/. 

The influence of the vessel shape on the apparent mass is estimated. The 

velocity function is determined for a supporting layer and a layer placed 

between walls under the impact of the plate. 

The expressions obtained for the velocity function can be utilized 

in solving hydroelasticity problems on the dynamic interaction between a 

structure and a fluid, the approximate analysis of the initial stage in 

the puncture of obstacles by impactors when just the inertial properties 

of the colliding materials are taken into account, and for the test 

verification of numerical and other approximate methods of solving plane 

hydromechanics problems. 

1. The impact of a plate on an incompressible fluid in a rectangular 
vessel. The formulation and solution of this problem were given first in /l/ by using 

Weierstrasssigmaand zeta functions. These functions are not very convenient for computer 

calculations. To avoid complex transformations of the solution and to obtain more modern 

calculation formulas it is useful to examine the problem once again. 

Following /l/, we recall its formulation to eliminate 

Y 

= 

the misprint that slipped in there at the same time. We 

consider the impact when a flat plate in incident on the 

horizontal surface of a fluid at rest within a rectangular 

z!z cylindrical vessel ABCD (Fig.1). The plate is horizontal 
Y C' with the fluid at the time of making contact. To determine 
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the perturbed motion at the time following impact, we place 

A Ii 
D.z 

the origin at the left edge of the vessel at the point A, 

directing the z axis to the right along the free surface 

I3 c and the y axis perpendicularly upward. The fluid depth is 

denoted by H = --io,i4, where O; is a pure imaginary quantity, 
Fig.1 the vessel width is denoted by 0~12, while a and b are the 

abscissae of the plate edges at the time of impact. 

To determine the characteristic function w= VP+ i$ of the perturbed motion we have the 

following boundary conditions. The vertical fluid velocity component v (2) is known on the 

segment ab. The velocity is directed downward and equals the vertical velocity of points of 

the plate after impact. The vessel walls AB, BC and CD are impermeable, and the normal 

fluid velocity thereon is zero. The impulsive pressure is zero on the free surface, i.e., 
'p = 0. 

Continuing the flow upward through the free surface, we arrive at the problem of deter- 

mining the fluid flow in the rectangle BB'C'C caused by the motion of the plate ab. The sides 

of the rectangle are streamlines and consequently, the fluid flow can be continued through the 

sides of the rectangle over the whole plane. Performing the continuation we obtain a doubly- 

periodic fluid flow outside a lattice with periods o1 and 0,. Each of the two plates, 

adjacent along the horizontal, have identical vertical velocities at symmetrical points while 

plates adjacent along the vertical have opposite vertical velocities. 
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It follows from the condition c[ 0 on Aa and Db that the circulation around c;~<:i! l.ldtc, 
should be zero. 

The flow pattern in Fig.1 also enables us to give the problem another mechanical inter- 

pretation. For instance, it can be considered that it consists of investigating the fluid 
flow in a rectangular vessel of twice the width o1 with a thin impermeable baffle in the 
middle. The impact of two plates symmetrically about to the middle of the vessel is super- 

imposed on the fluid free surface. The baffle does not influence the flow that originates 
and can be removed if necessary. If n ~- (1. then both plates merge and we have the symmetric 

impact of one plate of width 2b. 

The solution of the problem was found by using the effective general formulas (IL/, Ch. 

III, Sect.9) for the velocity function dwidz = II (.r, y) - iv (s, y), 3 :m rim iy. These formulas were 
first simplified and the sigma function was replaced by the Jacobi theta functions. The 
symmetry of the continued flow as used substantially. As a result of the transformations it 
turned out to be possible to express dux:dz as a definite integral satisfying all the con- 

ditions formulated above. 

An analogous formula was also found for the velocity function da’idz of a fluid flow 
without circulation in a rectangle of periods, which corresponded to the impact of n plates 

on the surface AD with the abscissae ak. and bh-(k- 1.2,....~) for the left and right edges of each 

plate, respectively, and the normal impact velocity L' (5). 

The formulas obtained (the definite integrals) for duidz contain no undetermined con- 

stants for any plate arrangement on the fluid surface. They are convenient for calculating 

different fluid flow elements, particularly the streamlines, the characteristic function ~3 = 

'p + iri etc. The necessary separation of the integrals into real and imaginary parts is 

realized by using known theta function addition formulas /7/. 

In the general case the integrals are taken numerically. 

To describe the possibilities of the proposed method of investigating impact more com- 

pletely we present a formula for calculating the apparent mass of a plate of width 2b in a 

vessel of finite width o,= 2d and depth II=: --io,l4. The impact velocity is II (2) = vg = conct, 

and the plate is arranged symmetrically about the middle of the vessel. We have for the 

coefficient of apparent mass 

A = 2p 

where p is the fluid density, and u (z. 0) is the horizontal component of the fluid velocity 

directly under the plate. Extracting u (5. 0) from the expression for _dwldz for y=o and 

substituting into (l.l), we obtain after going over to dimensionless quantities and perform- 

ing other necessary reduction 

h = 2 *l’(o) -~~[:1(fl,-IJgl+(5,)tf(-1.1)g1-(5r))-r 
9 61 (V) 

R 

(1.2) 

Ill(f(l,l)g,l(ql)ff(--1,--I)g,-(~l))ld5dy, X==hiA, 
y = b/d, h_ = npbV2, B,’ (0) = nfi, (0) 6, (0) 6, (0) 

f cm. n) = (GlzP (5,) .P h))” 

E,=zy, ‘11&-c+T, 5*‘&_+ (2 -t YP 
rlz = 4 

The theta functions 

in which it is necessary to set q= exp (-2nHld) for the problem under consideration. The 

domain of integration P is a triangle y<z61/2--, O<y<l% in the auxiliary plane ry. 

in (1.2) are defined by the following rapidly converging series /7/: 

6, (5) = 24"' (sin nz - q2 sin 3 n5 + .) 
I?, (5) = Zq”A (cm nz + q” cos 3ns + .) 

6, (2) = 1 + 2q cos 2nz + 2@ cos4n.z + 

I?, (z) = 1 - 2qcos 2ns + 296 co?, 4nz - 

Verification shows that the integrand (1.2) has a finite limit as s-y and y-o. It 

is continuous at other points of the triangle Q. Consequently, despite its apparent complex 

form the integral (1.2) is easily evaluated by the Simpson method on the basis of standard 

procedures. 
It is useful to compare computations of 3 by means of (1.2) with results known in the 

literature /l, 2/ for the limit cases H-s, d finite and d-m, H finite. The former (the 

vessel depth is infinite but the width is finite) corresponds to the impact of a periodic 
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lattice of plates on a half-space. The double magnitude of the apparent mass from the com- 
putation on one plate is determined according to /I/ from the formula 

The latter case (the vessel width is infinite, while the depth is finite) was first 
investigated in /2/. The plate apparent mass was determined /2/ by using multiple integrals. 
However, the numerical results of /2/ can be refined somewhat (and the results published later 
in /3/ at the same time) if the following formula is used (K and E are complete elliptic 
integrals of the first and second kinds): 

a = nb/(ZH), k = th CL, f (2) = ah* aslsh2 a 

It is still necessary to make a change in the variable of integration z= 1 -P, (!<t<i, 
in (1.4). The appropriate multiple integral in /2/ was reduced to such an integral in order 
to increase the accuracy of calculating the plate apparent mass. We note that (1.41 also 
follows from the integral (1.2) but a unimodular transformation of the periods of the theta 
functions /a/ and additional awkward calculations must be used for this. 

2. Plate impact on a free layer. It was remarked in /9/ that the correctness of 
the results of computing the motion elements in problems of dynamic interaction betweenplates 
and a fluid of bounded volume can be set up by using the symmetry property. According to 
this property, the half-sum of any flow characteristics (the plate apparent masses, say) during 
impact on a free fluid and on a layer whose boundary is impermeable (fixed), should agree to 
a high degree of accuracy with theappropriate characteristic of plate impact on a half-space 
for a layer of considerable thickness. Application of this property in practice enables 
rough errors in the results of solving the problem to be avoided. 

Consequently, in addition to problems on the impact of a plate on a fluid in a rectangular 
vessel, it is also useful to examine impact on a rectangular layer of fluid with a freesurface 
when there are no walls and bottom constraining the fluid motion. 

We show in Fig.2 a free ideal incompressible fluid layer AECD of thickness H= -io.JZ and 
width 28 = O&Z. We consider the plate impact to be symmetrical about the middle of the face 
AD. As before, the plate width is denoted by 2b and the origin of coordinates is placed at 
the centre of the plate. 

The formulation of the problem agrees completely with that presented in Sect.1, with the 
exception that the faces AB,BCand CD of the layer are free and the impulsive pressure thereon 
is zero, i.e., 'p = 0. 

Continuing the flow through the free surface upward and to the right, we obtain a doubly- 
periodic fluid flow outside a lattice with periods 0% and 0%. The plates adjacent along the 
horizontal have opposing vertical velocities at symmetric points. 

We will seek the solution of the problem as in Sect.1. We obtain for the velocity func- 
tion 

n = (5 - Zflce’, s = p + c, t = p - c 

In this case p=erp(-o.BnH/d) is the theta function parameter. 
Different special cases can be obtained from (2.1). For instance, let the 

infinite width (,$_-) and finite thickness H. If the impact is realized by a 
where u (z) = vp = const after the impact, then the integral (2.1) can be expressed 
elementary functions. We obtain 

(2.1) 

layer have 
stiff plate, 
in terms of 

(2.2) 

,,“b 
2H' 

-b<z<b 
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for the horizontal component of the fluid velocity u(s,(I) directly under the plate. 

The plate apparent mass coefficient is also easily found 

This formula is convenient for computer calculations. If the fluid layer is quite thin 

(H - 0, a - m),we obtain 1, ;= 2phH from (2.3) . For impact on a layer of large thickness Ill I=. 

a -. (I) we have 
?. , - ‘Le/(j (Z.(l) 

Taking into account that upon impact on a fluidoffinite depth /2/ (a fixed layer) we 

obtain from (1.4) as II -. m 
i;- 2 -;- a%/12 (0) 

It can be said that the half-sum of the apparent masses (2.4) and (2.5) for a free and a 

fixed fluid layer is close to the apparent mass of a plate upon impact on a half-space. 

Fig.2 Fig.3 

3. Impact on 
modify the boundary 

is located on which 

considered free and 

Continuing the 

fundamental periods 

which we must put 

The definition of the other quantities is given in (2.1). 

a supported layer and on a layer placed between walls. We will 

conditions by assuming that along the face BC in Fig.2 an impermeable wall 

the normal fluid velocity equals zero. As before, the faces AB and CD are 

cp=o thereon. 

flow we arrive at the definition of a doubly-periodic flow having the 

o,== 4d and 02- 4iH. The complex velocity function is defined by (2.1) in 

Formulas for doubling the theta functions /6/ were used in deriving (3.1). This solution 

is conserved if a thin impermeable baffle is placed along the y axis in Fig.2. We obtain a 

new mechanical interpretation of the problem - the motion of a plate submerged in the middle 
of a rectangular vessel and located perpendicular to the fluid free surface is investigated. 

The solution (3.1) extends the results obtained in /9, lo/. 

Now let impermeable walls be located along the faces AB and CD (Fig.2) while the face BC 
is free and cp= 0 thereon. The continued flow will have the fundamental periods ol= 2d and 
o2 = 2iH. As before, the velocity function dluidz is determined by the integral (2.1) in which 

it is necessary to take 

c-g, q +q (3.2) 

The remaining quantities in (2.1) do not change. 
In all the examples considered, the function gs (2) takes real positive values on the 
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upper edges of the slits (segments). 

4. Results of calculations. Figure 3 shows graphs of the dependence 

sionless coefficient x on the ratio y for different values of the parameter 

equals the ratio between the vessel depth and the plate half-width. 

of the dimen- 

6 = Hlb that 

The lower curve corresponds to the case 6=CC (a vessel of infinite depth) and was 

computed using (1.3). For y=O corresponding to a problem in /2/, the quantity x was 

calculated by using the definite integral (1.4). Below we present the results of computations 

using (1.4) (the last four columns determine the ordinates of the graphs in Fig.3 for ?=O): 

600 5 1 0.5 0.3 0.25 

x 1 1.0081 1.1725 0.519 2.045 2.318 

The correctness of the evaluation of the integral (1.4) on a computer was verified for 

625 by comparing it with the results of a computation by the approximate formula (2.5) and 

by the asymptotic formulas in /9/ for small Se 

Note that the numerical result x =1.007 /3, 4/ agrees with the value obtained for the 

apparent mass (AM) for 6=5. For 6=1 the value x=1.165 cited in the literature /l, 2, 5/ 

also turns out to be close to that obtained here. 

The results of using (1.2) were an additional check on the accuracy of evaluatingintegral 

(1.4). Evaluation of this double integral showed that for small ratios B the AM coefficient 

keeps the value practically unchanged over a broad range of variation of y and is governed 

mainly by the closeness of the vessel bottom. The vessel walls have practically no influence 

on the impact and the flow near the plate is similar to a considerable extent to /2/. 

If the plate width is close to the vessel width, then the AM grows rapidly as v grows, 

mainly because of the closeness of the plate edges to the vessel walls. In the limit as y-l 

the plate AM are practically independent of the vessel depth, and all the graphs merge with 

the graph for the specific AM of a lattice of plates on a half-space. 

The influence of the vessel shape on the plate AM ceases to be felt in practice for 6>5 

over the whole range of variation of y (for small 6 as v-1). In particular, for 6=5 the 

graph'of 1 almost merges with the lower curve in Fig.3. 

It is also useful to compare the AM of plates on a fluid on a channel of cylindrical shape 

/6/ with the specific AM of a periodic lattice of plates (6 = 00) and vessels of finite depth 

(6 > 5). To do this it is necessary to use the equality Jfx =y in the appropriate formulas 

/6/. It turns out that the difference in AM does not exceed 8% over the whole range of 

variation of the parameter y. It is possible that it is still less; however; to obtain a 

better-founded estimate it would be necessary to narrow the domain of applicability somewhat 

for the asymptotic formula /6/ for the plate AM as x--1(y-1): 

"=-$ 
( 
41n 1 

1 --y' 
+161n2-2--_ 

) 
(4.1) 

Indeed, according to (4.1) the plate AM is 4-8% less in the range 0.9<y<O.95 than for 

a rectangular vessel of infinite depth according to (1.3). But this should obviously not be 

so because of the more constricted fluid motion in a cylindrical channel. However, (4.1) 

yields a 0.82% greater AM than (1.3) even for y =0.99. For values of y still closer to one, 

the difference in these AM becomes almost unnoticeable, which shows that the vessel shape has 

only a slight influence under the conditions mentioned. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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CENTRIFUGAL WAVES IN A PROGRESSIVELY ROTATING FLUID FLOW* 

R.A. BRAZHE 

It is shown that it is possible for solitons to arise in the progressively rotating flow 

of an ideal incompressible fluid. Such a motion is characteristic for vertical MHDgenerators 

and small-scale atmospheric vortices. 

1. Equations of motion and boundary conditions. Let a progressively rotational 

fluid flow be created in a rigid tube with internal radius R by means of a tangential input 

and pressure drop. This leads to the formation in the tube of a cylindrical cavity of radius 

To filled with air or, if the tube does not communicate with the atmosphere, the saturated 

vapour of the fluid (Fig.1). Any 
along the axis of the tube in the 

Fig.1 

perturbation q(z,t) of the radius of the cavitymaypropagate 

form of plane waves. In future, we shall assume that the 

maximum amplitude of the perturbation, a, is small com- 
pared with h, the thickness of the fluid layer, and 2, the 

length of the perturbation is, in the other hand, large 

compared with h. This leads to the following parameters 
being small: e= a/h and 15-h/l. Here the thickness of the 

fluid layer is taken to be small compared with the radius 

of the tube, so that h = (.F ~ ro2)!(2ro). 

Because of the axial symmetry of the fluid boundary 

(but not of the flow), in a cylindrical coordinate system 
the components of r, thevelocity vector of the fluid, 
depend only on the distance r from the flow axis, the z 

coordinate and t, the time. The vorticity o of the flow 

is taken to be constant along the tube and directed along 

the z axis, so that there is no angular dependence. 
Assuming that the fluid is incompressible, we can introduce the vector potential A such 

that r = rotA, and reduce the problem to solving Poisson's equation AA= -CL 

On the free surface of the fluid rl z ~O--~(z, t) (here and below the index 1 refers to 

quantities that are calculated on the free surface) the kinematic boundary condition can be 

written in the form 

The dynamic boundary condition is obtained from the Euler equation by substituting ex- 
pressions for the pressure in the rotating fluid at an arbitrary point of the free surface 
into it 

1'1 I-0 L 'i&W (r<,~ = - r1-Z) 

where M = v,g, is the constant specific angular momentum of the fluid. The variation in the 

fluid pressure on the free surface caused by its perturbation (with rl-_rO) is equal to 
dp, -= pvq2ro-‘dq. Consequently, the radial and azimuthal projections of the Euler equation express 
the constant nature of the radial and azimuthal components of the fluid flow velocity on the 
boundary with the gas vortex, and the axial, projection gives the dynamical boundary condition: 
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